DRESDNER ROBIN

STORMWATER MANAGEMENT AND ENGINEER'S REPORT

29 VAN REIPEN AVENUE

BLOCK 7904, LOTS 1 & 2

CITY OF JERSEY CITY, HUDSON COUNTY, NEW JERSEY

DRESDNER ROBIN PROJECT NO.: 10743-008

PREPARED FOR

29 VAN REIPEN, LLC 98 CUTTERMILL ROAD SUITE 284 NORTH GREAT NECK, NY 11021

PREPARED BY

DRESDNER ROBIN 1 EVERTRUST PLAZA, SUITE 901 JERSEY CITY, NJ 07302

TABLE OF CONTENTS

1
1
1
1
1
2
2
2
3
3
4
4
4

LIST OF APPENDICES

Appendix A Sanitary Sewer Demand Calculations

Appendix B Water Service Demand Calculations

Appendix C Stormwater Runoff Calculations

1.0 INTRODUCTION

1.1 PURPOSE

This report has been prepared as required by Item 1.G of the *Engineering Completeness* section of the *Jersey City Land Development Ordinance Preliminary and Final Major Site Plan Checklist - Application Requirements, Development Procedures & Checklists*, to demonstrate how the proposed improvements meet the criteria of the following standards:

- New Jersey Residential Site Improvement Standards (N.J.A.C. 5:21) (published July 21, 2014).
- Stormwater Management Rules (N.J.A.C. 7:8) (amended April 19, 2010).
- Safe Drinking Water Act Rules (N.J.A.C. 7:10) (amended January 4, 2011).
- Pollutant Discharge Elimination System Rules (N.J.A.C. 7:14A) (amended January 5, 2009).
- Article VI "Stormwater Control" of Chapter 345 "Zoning" from the Code of the City of Jersey
 City.

1.2 PROJECT DESCRIPTION

The project site contains approximately 0.39 acres and is situated on the northeastern corner of Homestead Place along the southern side of Van Reipen Avenue. Zoning for the site is governed by the Journal Square 2060 Redevelopment Plan. The site is currently occupied by surface parking lot and a three-story brick building.

The applicant proposes to construct a 27-story mixed-use building. Mechanical rooms will be provided at grade.

2.0 STORMWATER MANAGEMENT

2.1 PURPOSE AND NEED

The proposed development will disturb more than 0.25 acres of land; therefore, the project is defined as a "major development" in accordance with Article VI "Stormwater Control" of Chapter 345 "Zoning" from the Code of the City of Jersey City. As a result, these regulations mandate the proposed development incorporate measures to address groundwater recharge, stormwater quality, and stormwater quantity.

DR PROJECT No.: 10743-008

DECEMBER 2020

STORMWATER MANAGEMENT & ENGINEER'S REPORT 29 VAN REIPEN AVENUE BLOCK 7904, LOTS 1 & 2 CITY OF JERSEY CITY, HUDSON COUNTY, NEW JERSEY DR PROJECT No.: 10743-008 DECEMBER 2020

2.2 GROUNDWATER RECHARGE

The regulations cited above specify minimum design and performance standards for groundwater recharge; however, in accordance with N.J.A.C. 7:8-5.4(a)2.ii., the groundwater recharge requirement does not apply to previously disturbed project sites within the "Metropolitan Planning Area PA-1 Zone", which includes the project site; therefore, groundwater recharge is not provided for the project.

2.3 WATER QUALITY

The Jersey City Stormwater Control Ordinance requires "major developments" to include stormwater management measures to reduce the post-construction load of total suspended solids (TSS) in stormwater runoff generated from the water quality storm by 80% of the anticipated load from the development site. The requirement to reduce TSS does not apply to any stormwater runoff in a discharge regulated under a numeric effluent limitation for TSS imposed under the New Jersey Pollutant Discharge Elimination System (NJPDES) rules, N.J.A.C. 7:14A, or in a discharge specifically exempt under a NJPDES permit from this requirement. JCMUA combined sewer outfalls are currently permitted under the NJDPES program. Stormwater runoff from this project will discharge to a combined sewer; therefore, the water quality requirements do not apply. In addition, no vehicular surfaces are proposed which would require stormwater treatment per the NJDEP Stormwater Management Rules.

2.4 WATER QUANTITY

The Jersey City Stormwater Control Ordinance requires "major developments" to demonstrate through hydrologic and hydraulic analysis that the post-constructed stormwater runoff rates and volumes leaving the site meet specific criteria. The requirements state that proposed peak runoff rates shall be reduced to 50%, 75% and 80% of existing rates for the 2-year, 10-year and 100-year storm events respectively.

To satisfy said requirements, an underground detention basin system is proposed in the cellar of the building. Table 1 summarizes the existing and proposed stormwater analysis. Existing and proposed stormwater runoff calculations can be found in Appendix C.

2.4.1 EXISTING CONDITIONS

At present, the site consists mostly of impervious cover in the form of asphalt pavement and buildings. The site runoff flows northwest to a street catch basin on Van Reipen Avenue.

2.4.2 PROPOSED CONDITIONS

The proposed conditions of the development project include facilities designed to manage stormwater runoff by detaining the runoff to reduce the peak runoff flow rates prior to discharge into the combined sewer. Runoff from approximately 80% of the site area will be collected via roof and surface drains and conveyed to a detention basin, which will be located beneath the first floor of the proposed building. The attenuated flow from the proposed detention basin will be controlled via an orifice control structure and discharge to the combined sewer in Homestead Place. The balance of the site, which consists of hardscape, will be undetained. The undetained flow and the detained flow are all contributory to the "Proposed Peak Runoff Rate" presented in Table 1 below.

STORM EVENT	EXISTING RUNOFF RATE (cfs)	REQUIRED RUNOFF RATE REDUCTION FACTOR*	RUNOFF RATE ALLOWABLE REDUCTION RUNOFF		MEETS REQUIREMENTS
2-yr	1.18	50%	0.59	0.37	YES
10-yr	1.89	25%	1.42	0.53	YES
100-yr	2.90	20%	2.32	0.72	YES

^{*}Per N.J.A.C. 7:8-5.4.3.

3.0 WATER AND SEWER DEMAND

3.1 SANITARY SEWER

Survey information indicates the presence of a 15" combined sewer in Homestead Place; however, record mapping from the JCMUA indicates the presence of an 18-inch diameter combined sewer. Coordination with the JCMUA will be necessary to confirm the characteristics of the existing sewer. The JCMUA also to upgrade this existing 15" clay combined sewer in Homestead Place to an 18" PVC combined sewer pipe. One 12-inch diameter sewer lateral connecting to the sewer in Homestead Place is proposed for the project. The projected sanitary flow can be found in Appendix A, which was computed in accordance with N.J.A.C. 7:14A-23.3.

The anticipated flow is greater than 8,000 gallons per day and therefore a Treatment Works Approval will be required from the New Jersey Department of Environmental Protection (NJDEP) prior to construction.

3.2 WATER SERVICE

Record mapping indicates the presence of a 6-inch diameter water main in Van Reipen Ave and a 12-inch diameter main in Pavonia Ave. A 6-inch combined service lateral is proposed for the project, which will connect to the 6" main in Van Reipen Avenue.

The estimated average-daily and peak water demand for the development can be found in Appendix B, which was calculated in accordance with Table 5.1 and 5.2 of the New Jersey Residential Site Improvements Standards (N.J.A.C. 5:21-5.1) and the Safe Drinking Water Act Rules (N.J.A.C. 7:10-12.6, Table 1: Average Daily Water Demand).

q:\prj\10743-008 29vanreipen\eg\design\site - civil\swm\2020-12-14 29 van reipen eng report.docx

DR PROJECT No.: 10743-008

DECEMBER 2020

APPENDIX A SANITARY SEWER DEMAND CALCULATIONS

0.150

DRESDNER ROBIN

SANITARY SEWER CALCULATIONS

29 VAN REIPEN AVENUE BLOCK 7904, LOTS 1 & 2 JERSEY CITY, NJ DR PROJECT NO. 10743-008

Type of Establishment	Measurement	# Units	GPD/Unit	GPD
Studio	Per Dwelling	372	150	55,800
1 Bedroom	Per Dwelling	228	150	34,200
3 Bedroom	Per Dwelling	12	300	3,600
Retail	Sq. Ft.	5,407	0.1	541
Office	Sq. Ft.	25,320	0.1	2,532
Projected Estimates per N.J.A.C. 7:14A-23.3			Flow Received	100%
			Total Flow (GPD) (Q _{projected})	96,673

Pipe Length (LF)	Diameter (in)	Material	Slope	n*
19	12	PVC	2.00%	0.013

^{*} Per JCMUA Rules and Regulations, Section 5.01

Half Flow Pipe Cap	acity
Depth of Flow, h (in)	6
h/D	0.500
Pipe Radius, r (ft)	0.500
Circ. Segment Height, h (ft)	0.500
Central Angle, θ (radians)	3.142
Cross-Sectional Area, A (ft ²)	0.393
Wetted Perimeter, P (ft)	1.571
Hydraulic Radius, R (ft)	0.250
Discharge, Q (cfs)	2.526
Q _{projected} (x2) (cfs)	0.299
Pipe % Full [(A/A _{full})*100%]	50.00%
Average Velocity, V (ft/sec)	6.433
$Q_{pipe} > 2xQ_{projected}$	TRUE
V ≥ 2.2 ft/sec	TRUE
Therefore, design is	ADEQUATE

Actual Pipe Velocity								
**Depth of Flow, h (in)	1.420							
Pipe Radius, r (ft)	0.500							
Circ. Segment Height, h (ft)	0.118							
Central Angle, θ (radians)	1.405							
Cross-Sectional Area, A (ft ²)	0.052							
Wetted Perimeter, P (ft)	0.702							
Hydraulic Radius, R (ft)	0.074							
Pipe % Full [(A/A _{full})*100%]	6.66%							
Actual Velocity, V (ft/sec)	2.869							

^{**}Must have h < r

Total Flow (CFS) (Q_{projected})

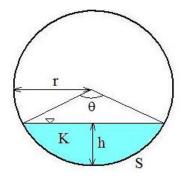
Compare								
Discharge, Q (cfs)	0.150							
Q _{projected} , (cfs)	0.150							

DRESDNER ROBIN

Equations used for calculations:

Manning's Formula:

$$Q = \left(\frac{1.49}{n}\right) A R^{2/3} \sqrt{S}$$


Q = Flow Rate, (ft^3/s)

n = Manning's Coefficient

 $A = Flow Area, (ft^2)$

R = Hydraulic Radius, (ft)

S = Channel Slope, (ft/ft)

$$\theta = 2 \arccos\left(\frac{r-h}{r}\right)$$
$$A = \frac{r^2(\theta - \sin\theta)}{2}$$

APPENDIX B WATER SERVICE DEMAND CALCULATIONS

DRESDNER ROBIN

WATER DEMAND CALCULATIONS

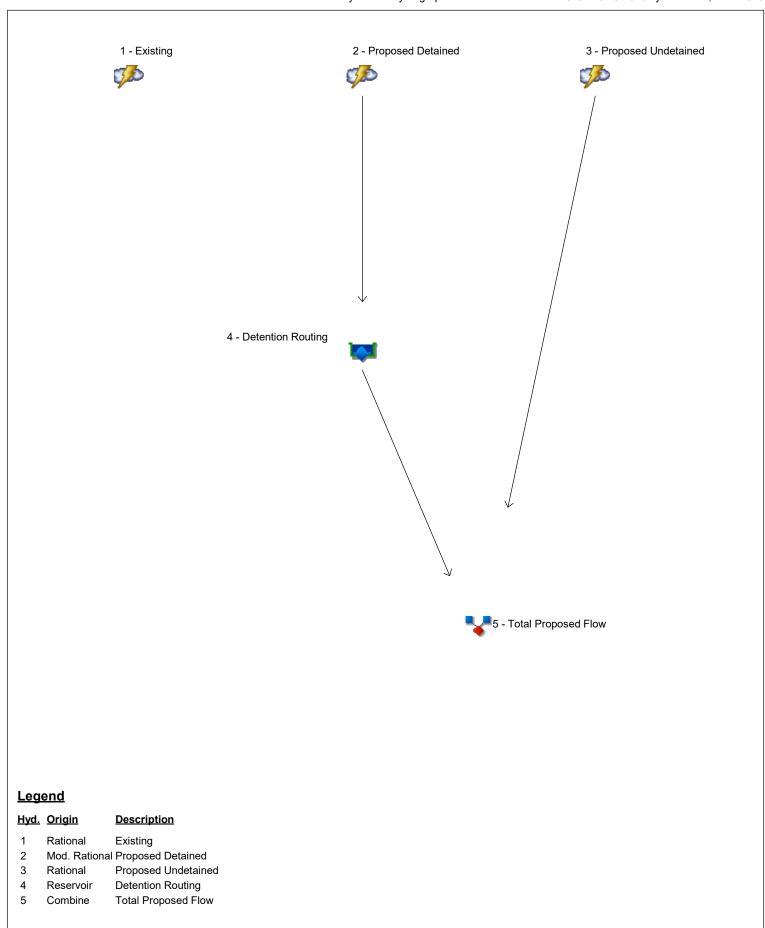
29 VAN REIPEN AVENUE BLOCK 7904, LOTS 1 & 2 JERSEY CITY, NJ

DR PROJECT NO. 10743-008

	Residential Demand ¹											
Type of Establishment	Measurement	# Units	GPD/Unit	Daily Demand (GPD)	Daily Demand (MGD)	Peaking Factor	Peak Daily Demand (GPD)	Peak Daily Demand (MGD)				
Studio	Per Dwelling	372	80	29,760	0.030	3	89,280	0.089				
1-Bedroom	Per Dwelling	228	120	27,360	0.027	3	82,080	0.082				
3-Bedroom Per Dwelling		12	270	3,240	0.003	3	9,720	0.010				
Total Units 612												
То	tal Residential De	emand		60,360	0.060		181,080	0.181				

	Non-Residential Demand ²										
Type of Establishment Measurement # Units GPD/Unit			Daily Demand (GPD)	Daily Demand (MGD)	Peaking Factor	Peak Daily Demand (GPD)	Peak Daily Demand (MGD)				
Office/Retail	SF	30,727	0.125	3,841	0.004	3	11,523	0.012			
Total Non-Residential Demand				3,841	0.004		11,523	0.012			

Total Site Demand	Daily Demand (GPD)	Daily Demand (MGD)	Peak Daily Demand (GPD)	Peak Daily Demand (MGD)
Total Site Dellialiu	64,201	0.064	192,603	0.193


Notes:

¹ Residential demand as per N.J.A.C. 5:21-5.1

² Non-residential demand as per N.J.A.C. 7:10-12.6 (Table 1)

APPENDIX C STORMWATER RUNOFF CALCULATIONS

Project: 29 Van Reipen.gpw

Monday, 12 / 14 / 2020

Hydrograph Return Period Recap

		Inflow		Peak Outflow (cfs)							Hydrograph
lo.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	Rational			1.184			1.889			2.901	Existing
2	Mod. Rational			0.714			1.348			2.374	Proposed Detained
3	Rational			0.139			0.221			0.340	Proposed Undetained
4	Reservoir	2		0.319			0.489			0.655	Detention Routing
5	Combine	3, 4		0.366			0.533			0.718	Total Proposed Flow

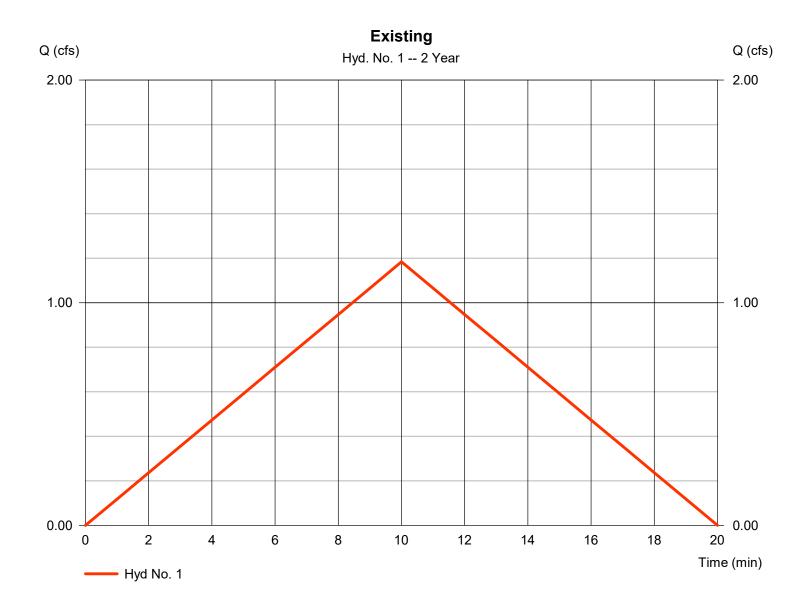
Proj. file: 29 Van Reipen.gpw

Monday, 12 / 14 / 2020

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	Rational	1.184	1	10	710				Existing	
2	Mod. Rational	0.714	1	10	1,075				Proposed Detained	
3	Rational	0.139	1	10	83				Proposed Undetained	
4	Reservoir	0.319	1	92	2,732	2	85.74	74.2	Detention Routing	
5	Combine	0.366	1	12	2,815	3, 4			Total Proposed Flow	
29	⊥ Van Reipen.g	pw	1		Return F	 Period: 2 Ye	ear	Monday, 12 / 14 / 2020		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Monday, 12 / 14 / 2020

Hyd. No. 1

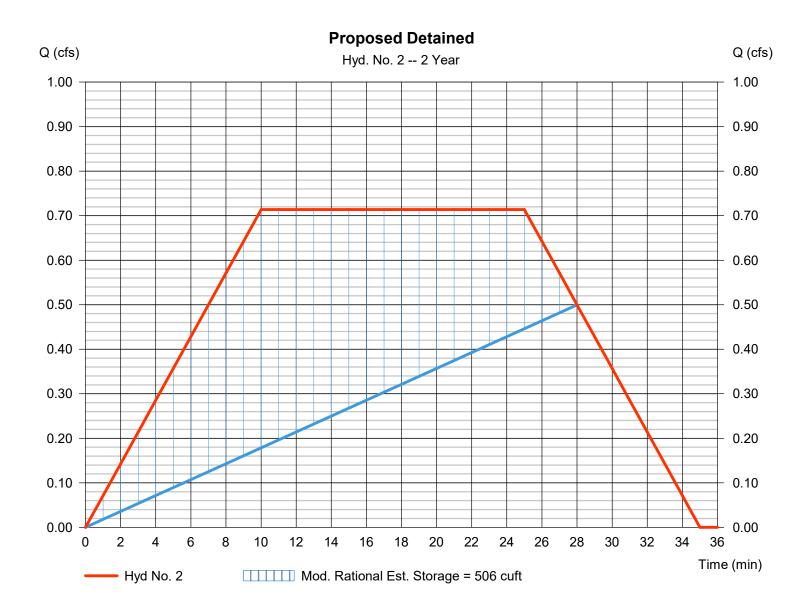
Existing

= Rational Hydrograph type Peak discharge = 1.184 cfsStorm frequency = 2 yrsTime to peak = 10 min Time interval = 1 min Hyd. volume = 710 cuft Runoff coeff. = 0.88*Drainage area = 0.380 acTc by User Intensity = 3.539 in/hr $= 10.00 \, \text{min}$

IDF Curve = JERSEY CITY IDF_2017.IDF Asc/Rec limb fact = 1/1

^{*} Composite (Area/C) = $[(0.320 \times 0.98) + (0.060 \times 0.35)] / 0.380$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Monday, 12 / 14 / 2020

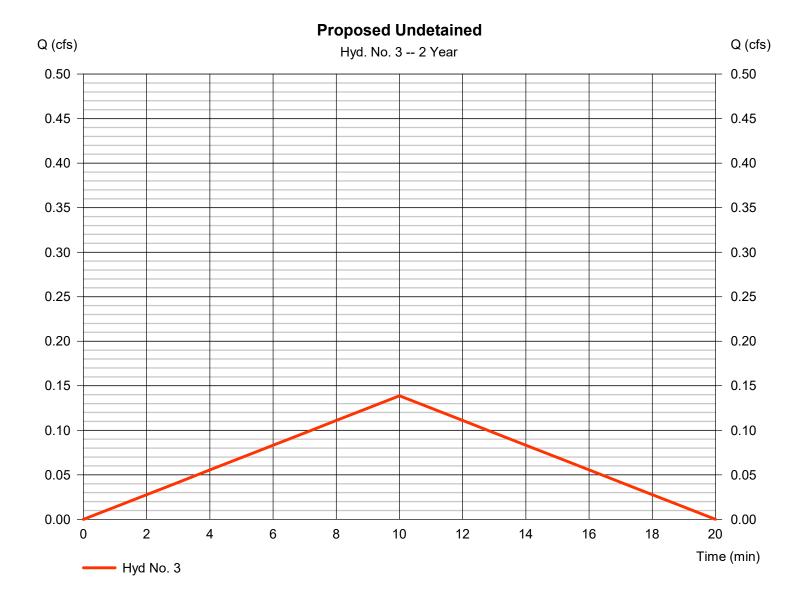
Hyd. No. 2

Proposed Detained

Hydrograph type Peak discharge = 0.714 cfs= Mod. Rational Storm frequency = 2 yrsTime to peak = 10 min Time interval = 1 min Hyd. volume = 1,075 cuftRunoff coeff. Drainage area = 0.350 ac= 0.98*Intensity Tc by User $= 10.00 \, \text{min}$ = 2.081 in/hr**IDF** Curve = JERSEY CITY IDF 2017.IDF Storm duration $= 2.5 \times Tc$ Est. Reg'd Storage Target Q =0.530 cfs=506 cuft

^{*} Composite (Area/C) = [(0.350 x 0.98)] / 0.350

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Monday, 12 / 14 / 2020

Hyd. No. 3

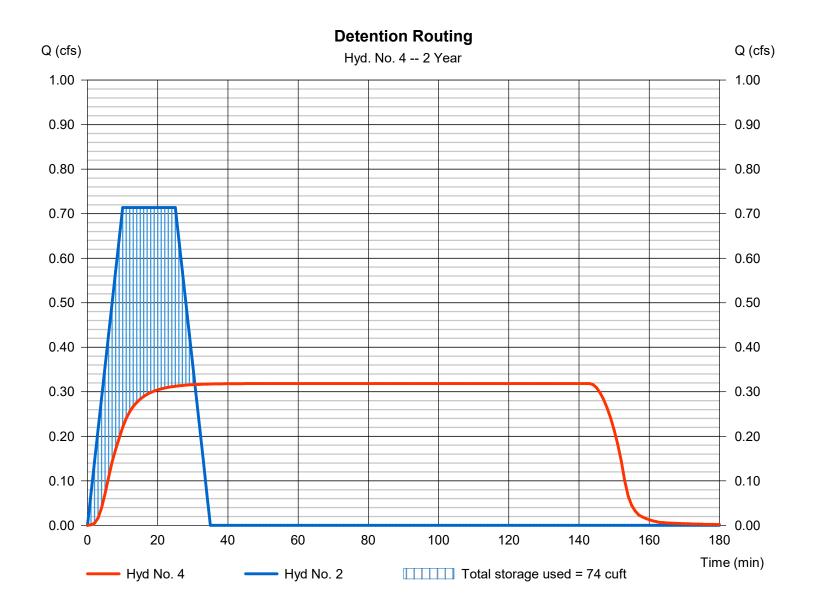
Proposed Undetained

Hydrograph type Peak discharge = 0.139 cfs= Rational Storm frequency Time to peak = 2 yrs= 10 min Time interval = 1 min Hyd. volume = 83 cuft Runoff coeff. = 0.98*Drainage area = 0.040 acTc by User Intensity = 3.539 in/hr $= 10.00 \, \text{min}$

IDF Curve = JERSEY CITY IDF_2017.IDF Asc/Rec limb fact = 1/1

^{*} Composite (Area/C) = [(0.040 x 0.98)] / 0.040

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Monday, 12 / 14 / 2020

Hyd. No. 4

Detention Routing

Hydrograph type Peak discharge = 0.319 cfs= Reservoir Storm frequency = 2 yrsTime to peak = 92 min Time interval = 1 min Hyd. volume = 2,732 cuftInflow hyd. No. = 2 - Proposed Detained Max. Elevation = 85.74 ft= Detention Pond = 74 cuft Reservoir name Max. Storage

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Monday, 12 / 14 / 2020

Pond No. 1 - Detention Pond

Pond Data

Trapezoid -Bottom L x W = 20.0 x 15.0 ft, Side slope = 0.00:1, Bottom elev. = 85.00 ft, Depth = 4.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	85.00	300	0	0
0.40	85.40	300	120	120
0.80	85.80	300	120	240
1.20	86.20	300	120	360
1.60	86.60	300	120	480
2.00	87.00	300	120	600
2.40	87.40	300	120	720
2.80	87.80	300	120	840
3.20	88.20	300	120	960
3.60	88.60	300	120	1,080
4.00	89.00	300	120	1,200

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 12.00	3.00	6.00	0.00	Crest Len (ft)	= 2.00	0.00	0.00	0.00
Span (in)	= 12.00	3.00	6.00	0.00	Crest El. (ft)	= 88.50	0.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 85.00	85.50	87.30	0.00	Weir Type	= Rect			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

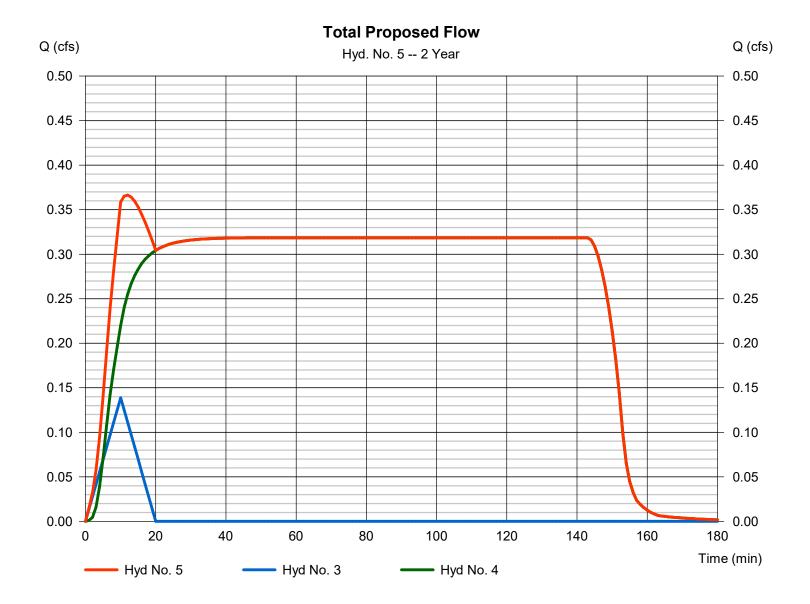
Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	85.00	0.00	0.00	0.00		0.00						0.000
0.04	12	85.04	0.00	0.00	0.00		0.00						0.000
0.08	24	85.08	0.00	0.00	0.00		0.00						0.000
0.12	36	85.12	0.00	0.00	0.00		0.00						0.000
0.16	48	85.16	0.00	0.00	0.00		0.00						0.000
0.20	60	85.20	0.00	0.00	0.00		0.00						0.000
0.24	72	85.24	0.00	0.00	0.00		0.00						0.000
0.28	84	85.28	0.00	0.00	0.00		0.00						0.000
0.32	96	85.32	0.00	0.00	0.00		0.00						0.000
0.36	108	85.36	0.00	0.00	0.00		0.00						0.000
0.40	120	85.40	0.00	0.00	0.00		0.00						0.000
0.44	132	85.44	0.00	0.00	0.00		0.00						0.000
0.48	144	85.48	0.00	0.00	0.00		0.00						0.000
0.52	156	85.52	0.00 ic	0.00 ic	0.00		0.00						0.001
0.56	168	85.56	0.01 ic	0.01 ic	0.00		0.00						0.008
0.60	180	85.60	0.02 ic	0.02 ic	0.00		0.00						0.020
0.64	192	85.64	0.04 ic	0.04 ic	0.00		0.00						0.036
0.68	204	85.68	0.06 ic	0.06 ic	0.00		0.00						0.055
0.72	216	85.72	0.07 ic	0.07 ic	0.00		0.00						0.073
0.76	228	85.76	0.09 ic	0.09 ic	0.00		0.00						0.087
0.80	240	85.80	0.10 ic	0.10 ic	0.00		0.00						0.099
0.84	252	85.84	0.11 ic	0.11 ic	0.00		0.00						0.110
0.88	264	85.88	0.12 ic	0.12 ic	0.00		0.00						0.119
0.92	276	85.92	0.13 ic	0.13 ic	0.00		0.00						0.128
0.96	288	85.96	0.14 ic	0.14 ic	0.00		0.00						0.137
1.00	300	86.00	0.15 ic	0.14 ic	0.00		0.00						0.145
1.04	312	86.04	0.16 ic	0.15 ic	0.00		0.00						0.152
1.08	324	86.08	0.16 ic	0.16 ic	0.00		0.00						0.159
1.12	336	86.12	0.17 ic	0.17 ic	0.00		0.00						0.166
1.16	348	86.16	0.18 ic	0.17 ic	0.00		0.00						0.173
1.20	360	86.20	0.18 ic	0.18 ic	0.00		0.00						0.179
1.24	372	86.24	0.19 ic	0.19 ic	0.00		0.00						0.185

Continues on next page...

Detention Pond Stage / Storage / Discharge Table

Stage /	Storage / L	Discharge i	able										
Stage ft	Storage cuft	Elevation ft	CIv A cfs	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
	ourt			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.28	384	86.28	0.19 ic	0.19 ic	0.00		0.00						0.191
1.32	396	86.32	0.20 ic	0.20 ic	0.00		0.00						0.197
1.36	408	86.36	0.20 ic	0.20 ic	0.00		0.00						0.203
1.40	420	86.40	0.21 ic	0.21 ic	0.00		0.00						0.208
1.44	432	86.44	0.21 ic	0.21 ic	0.00		0.00						0.213
1.48 1.52	444 456	86.48 86.52	0.22 ic 0.22 ic	0.22 ic 0.22 ic	0.00 0.00		0.00 0.00						0.219 0.224
1.52	468	86.56	0.22 ic 0.24 ic	0.22 ic 0.23 ic	0.00		0.00						0.224
1.60	480	86.60	0.24 ic	0.23 ic	0.00		0.00						0.229
1.64	492	86.64	0.24 ic	0.24 ic	0.00		0.00						0.238
1.68	504	86.68	0.25 ic	0.24 ic	0.00		0.00						0.243
1.72	516	86.72	0.25 ic	0.25 ic	0.00		0.00						0.247
1.76	528	86.76	0.25 ic	0.25 ic	0.00		0.00						0.252
1.80	540	86.80	0.26 ic	0.26 ic	0.00		0.00						0.256
1.84	552	86.84	0.26 ic	0.26 ic	0.00		0.00						0.260
1.88	564	86.88	0.26 ic	0.26 ic	0.00		0.00						0.265
1.92	576	86.92	0.28 ic	0.27 ic	0.00		0.00						0.269
1.96	588	86.96	0.28 ic	0.27 ic	0.00		0.00						0.273
2.00	600	87.00	0.28 ic	0.28 ic	0.00		0.00						0.277
2.04	612	87.04	0.29 ic	0.28 ic	0.00		0.00						0.281
2.08	624	87.08	0.29 ic	0.29 ic	0.00		0.00						0.285
2.12	636	87.12 87.16	0.29 ic 0.29 ic	0.29 ic 0.29 ic	0.00 0.00		0.00						0.289 0.293
2.16 2.20	648 660	87.16 87.20	0.29 lc 0.31 ic	0.29 lc 0.30 ic	0.00		0.00						0.293
2.24	672	87.24	0.31 ic	0.30 ic	0.00		0.00						0.297
2.28	684	87.28	0.31 ic	0.30 ic	0.00		0.00						0.304
2.32	696	87.32	0.31 ic	0.31 ic	0.00 ic		0.00						0.309
2.36	708	87.36	0.32 ic	0.31 ic	0.01 ic		0.00						0.323
2.40	720	87.40	0.35 ic	0.31 ic	0.03 ic		0.00						0.346
2.44	732	87.44	0.39 ic	0.32 ic	0.06 ic		0.00						0.376
2.48	744	87.48	0.42 ic	0.32 ic	0.09 ic		0.00						0.414
2.52	756	87.52	0.46 ic	0.33 ic	0.13 ic		0.00						0.460
2.56	768	87.56	0.52 ic	0.33 ic	0.18 ic		0.00						0.509
2.60	780	87.60	0.56 ic	0.33 ic	0.23 ic		0.00						0.562
2.64	792	87.64	0.62 ic	0.34 ic	0.28 ic		0.00						0.620
2.68	804	87.68	0.69 ic	0.34 ic	0.34 ic		0.00						0.675
2.72 2.76	816 828	87.72 87.76	0.74 ic 0.79 ic	0.34 ic 0.35 ic	0.39 ic 0.44 ic		0.00 0.00						0.731 0.782
2.80	840	87.80	0.79 lc 0.84 ic	0.35 ic	0.44 ic 0.47 ic		0.00						0.762
2.84	852	87.84	0.86 ic	0.35 ic	0.47 ic		0.00						0.861
2.88	864	87.88	0.91 ic	0.35 ic	0.54 ic		0.00						0.898
2.92	876	87.92	0.94 ic	0.36 ic	0.58 ic		0.00						0.933
2.96	888	87.96	0.97 ic	0.36 ic	0.61 ic		0.00						0.966
3.00	900	88.00	1.00 ic	0.36 ic	0.63 ic		0.00						0.998
3.04	912	88.04	1.04 ic	0.37 ic	0.66 ic		0.00						1.029
3.08	924	88.08	1.07 ic	0.37 ic	0.69 ic		0.00						1.058
3.12	936	88.12	1.10 ic	0.37 ic	0.71 ic		0.00						1.087
3.16	948	88.16	1.13 ic	0.38 ic	0.74 ic		0.00						1.115
3.20	960	88.20	1.15 ic	0.38 ic	0.76 ic		0.00						1.141
3.24	972	88.24	1.18 ic	0.38 ic	0.79 ic		0.00						1.167
3.28 3.32	984 996	88.28 88.32	1.21 ic 1.22 ic	0.39 ic 0.39 ic	0.81 ic 0.83 ic		0.00 0.00						1.193 1.217
3.36	1,008	88.36	1.24 ic	0.39 ic	0.85 ic		0.00						1.242
3.40	1,020	88.40	1.27 ic	0.39 ic	0.87 ic		0.00						1.265
3.44	1,032	88.44	1.29 ic	0.40 ic	0.89 ic		0.00						1.288
3.48	1,044	88.48	1.32 ic	0.40 ic	0.91 ic		0.00						1.311
3.52	1,056	88.52	1.35 ic	0.40 ic	0.93 ic		0.02						1.352
3.56	1,068	88.56	1.46 ic	0.40 ic	0.95 ic		0.10						1.452
3.60	1,080	88.60	1.58 ic	0.40 ic	0.97 ic		0.21						1.583
3.64	1,092	88.64	1.74 ic	0.40 ic	0.99 ic		0.35						1.740
3.68	1,104	88.68	1.92 ic	0.40 ic	1.00 ic		0.51						1.917
3.72	1,116	88.72	2.11 ic	0.40 ic	1.02 ic		0.69						2.113
3.76	1,128	88.76	2.33 ic	0.40 ic	1.04 ic		0.88						2.324
3.80	1,140	88.80	2.55 ic	0.40 ic	1.06 ic		1.09						2.550
3.84	1,152	88.84	2.79 ic	0.40 ic	1.07 ic		1.32						2.789
3.88 3.92	1,164 1,176	88.88 88.92	3.04 ic 3.30 ic	0.39 ic 0.39 ic	1.09 ic 1.11 ic		1.56 1.81						3.041 3.304
3.96	1,176	88.96	3.58 ic	0.39 ic	1.11 ic		2.08						3.579
4.00	1,200	89.00	3.86 ic	0.37 ic	1.12 ic		2.35						3.863
	,												

...End


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Monday, 12 / 14 / 2020

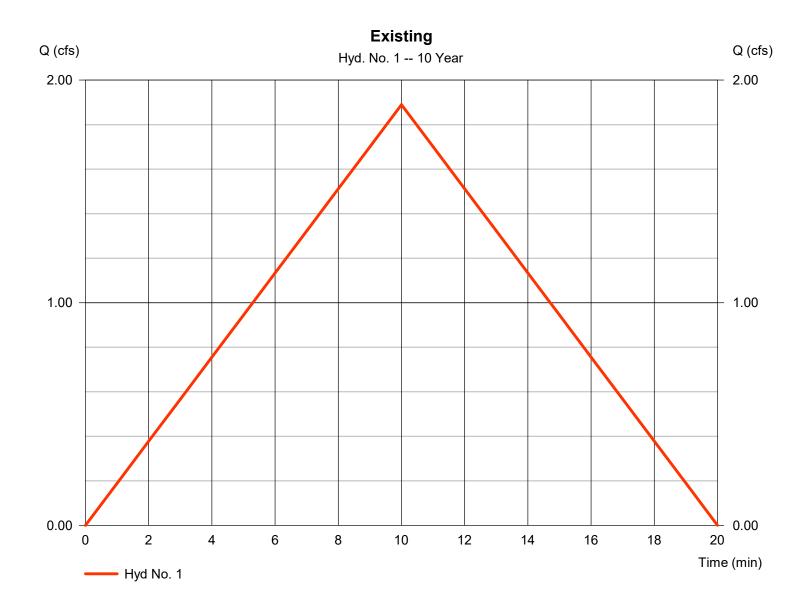
Hyd. No. 5

Total Proposed Flow

Hydrograph type = Combine Peak discharge = 0.366 cfsStorm frequency Time to peak = 2 yrs= 12 min Time interval = 1 min Hyd. volume = 2,815 cuftInflow hyds. Contrib. drain. area = 3, 4= 0.040 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	1.889	1	10	1,134				Existing
2	Mod. Rational	1.348	1	10	1,544				Proposed Detained
3	Rational	0.221	1	10	133				Proposed Undetained
4	Reservoir	0.489	1	137	4,397	2	86.52	152	Detention Routing
5	Combine	0.533	1	12	4,530	3, 4			Total Proposed Flow
29	Van Reipen.g	pw			Return	Period: 10 \	Year	Monday, 1	2 / 14 / 2020


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Monday, 12 / 14 / 2020

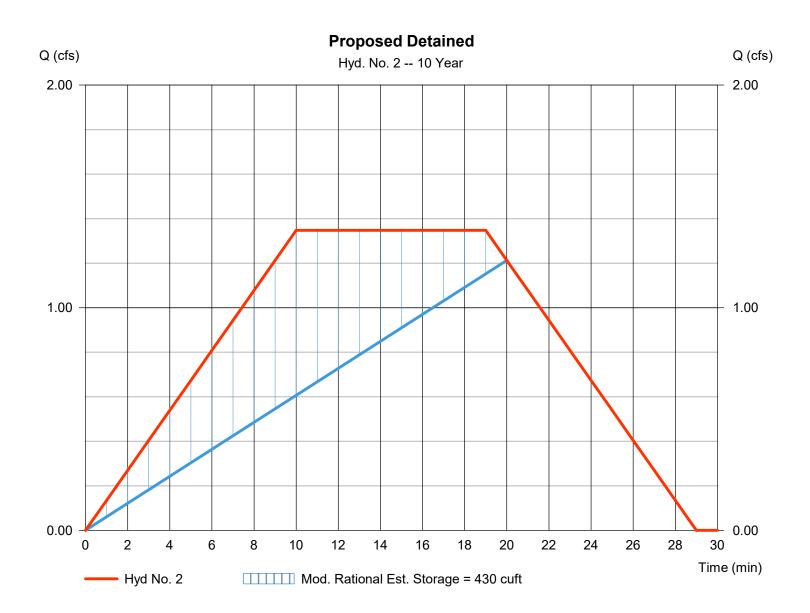
Hyd. No. 1

Existing

Hydrograph type = Rational Peak discharge = 1.889 cfsStorm frequency = 10 yrsTime to peak = 10 min Time interval = 1 min Hyd. volume = 1,134 cuft Drainage area Runoff coeff. = 0.88*= 0.380 acTc by User Intensity = 5.650 in/hr $= 10.00 \, \text{min}$ = JERSEY CITY IDF_2017.IDF Asc/Rec limb fact **IDF** Curve = 1/1

^{*} Composite (Area/C) = $[(0.320 \times 0.98) + (0.060 \times 0.35)] / 0.380$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Monday, 12 / 14 / 2020

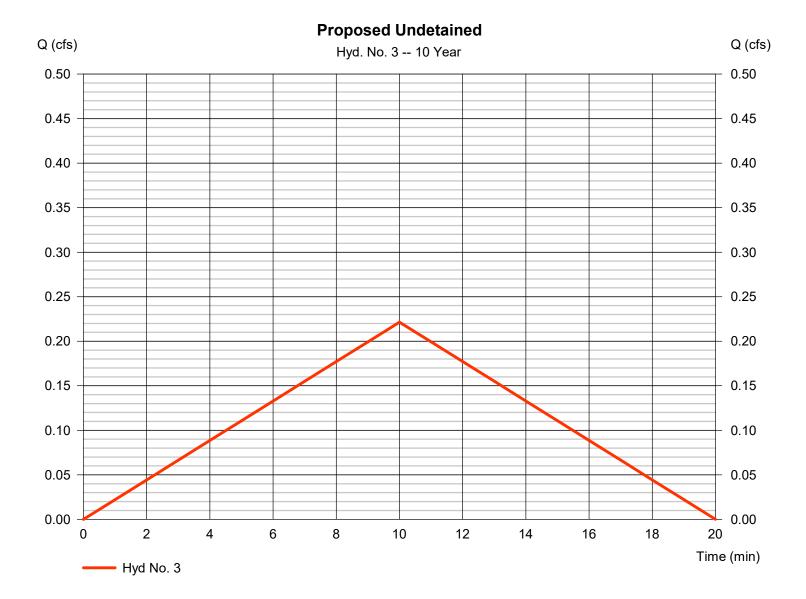
Hyd. No. 2

Proposed Detained

Hydrograph type = Mod. Rational Peak discharge = 1.348 cfsStorm frequency = 10 yrsTime to peak = 10 min Time interval = 1 min Hyd. volume = 1,544 cuft Runoff coeff. Drainage area = 0.350 ac= 0.98*Tc by User Intensity = 3.929 in/hr $= 10.00 \, \text{min}$ = JERSEY CITY IDF 2017.IDF Storm duration IDF Curve $= 1.9 \times Tc$ Est. Reg'd Storage =430 cuft Target Q =1.270 cfs

^{*} Composite (Area/C) = [(0.350 x 0.98)] / 0.350

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Monday, 12 / 14 / 2020

Hyd. No. 3

Proposed Undetained

Hydrograph type Peak discharge = 0.221 cfs= Rational Storm frequency = 10 yrsTime to peak = 10 min Time interval = 1 min Hyd. volume = 133 cuft Runoff coeff. Drainage area = 0.040 ac= 0.98*Tc by User Intensity = 5.650 in/hr $= 10.00 \, \text{min}$

IDF Curve = JERSEY CITY IDF_2017.IDF Asc/Rec limb fact = 1/1

^{*} Composite (Area/C) = [(0.040 x 0.98)] / 0.040

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

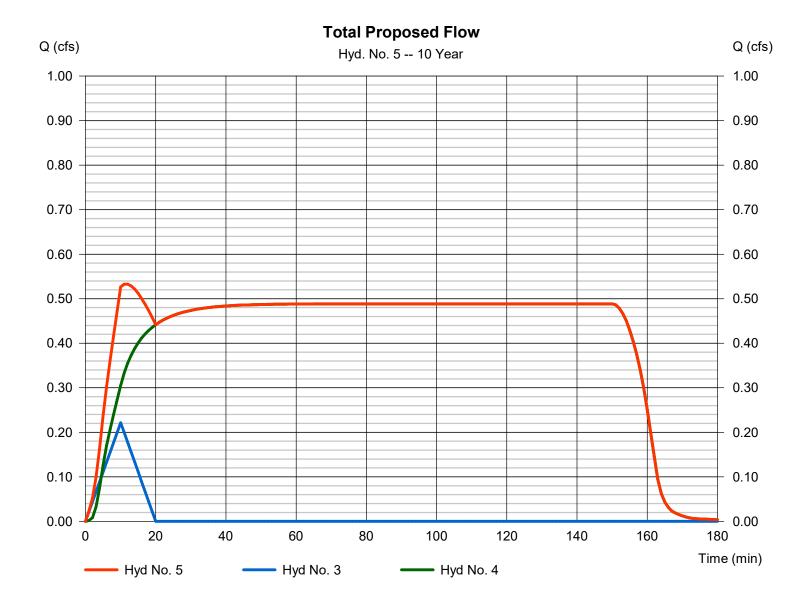
Monday, 12 / 14 / 2020

Hyd. No. 4

Detention Routing

Hydrograph type = Reservoir Peak discharge = 0.489 cfsStorm frequency = 10 yrsTime to peak = 137 min Time interval = 1 min Hyd. volume = 4,397 cuftInflow hyd. No. = 2 - Proposed Detained Max. Elevation = 86.52 ft= Detention Pond Reservoir name Max. Storage = 152 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Monday, 12 / 14 / 2020

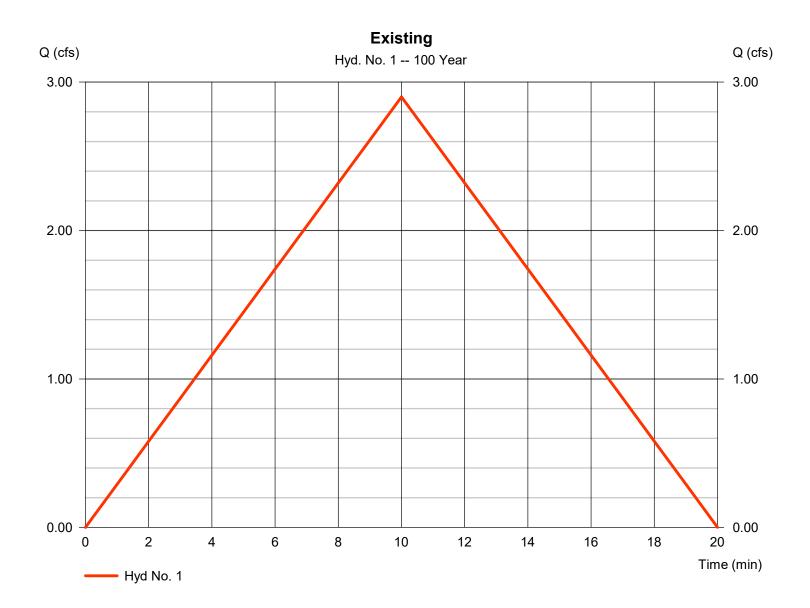
Hyd. No. 5

Total Proposed Flow

Hydrograph type = Combine Peak discharge = 0.533 cfsStorm frequency Time to peak = 10 yrs= 12 min = 4,530 cuft Time interval = 1 min Hyd. volume Inflow hyds. Contrib. drain. area = 3, 4= 0.040 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	2.901	1	10	1,740				Existing
2	Mod. Rational	2.374	1	10	2,151				Proposed Detained
3	Rational	0.340	1	10	204				Proposed Undetained
4	Reservoir	0.655	1	28	7,190	2	87.05	205	Detention Routing
5	Combine	0.718	1	11	7,394	3, 4			Total Proposed Flow
29	Van Reipen.g	pw			Return F	Period: 100	Year	Monday 12	2 / 14 / 2020


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Monday, 12 / 14 / 2020

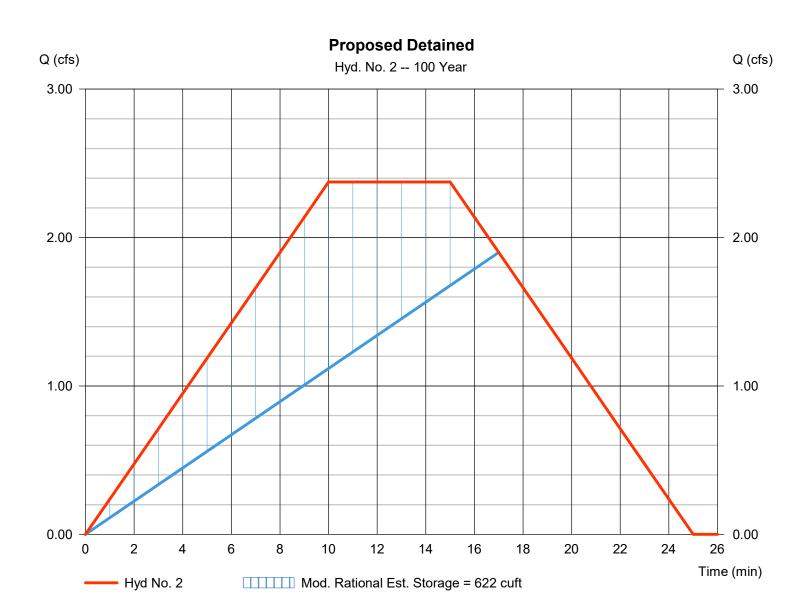
Hyd. No. 1

Existing

Hydrograph type = Rational Peak discharge = 2.901 cfsStorm frequency = 100 yrsTime to peak = 10 min Time interval = 1 min Hyd. volume = 1,740 cuftRunoff coeff. = 0.88*Drainage area = 0.380 acTc by User Intensity = 8.675 in/hr = 10.00 min = JERSEY CITY IDF_2017.IDF Asc/Rec limb fact **IDF** Curve = 1/1

^{*} Composite (Area/C) = $[(0.320 \times 0.98) + (0.060 \times 0.35)] / 0.380$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Monday, 12 / 14 / 2020

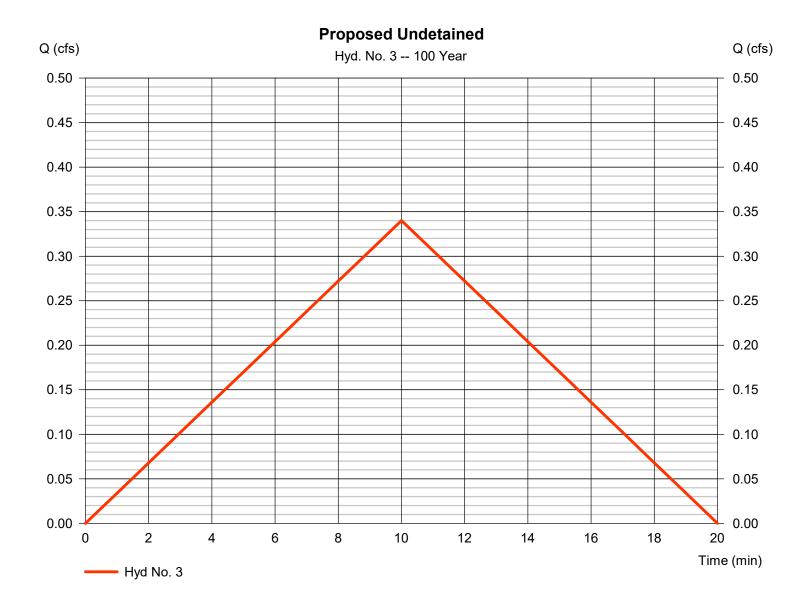
Hyd. No. 2

Proposed Detained

Hydrograph type = Mod. Rational Peak discharge = 2.374 cfsStorm frequency = 100 yrsTime to peak = 10 min Time interval = 1 min Hyd. volume = 2,151 cuftRunoff coeff. Drainage area = 0.350 ac= 0.98*Intensity = 6.921 in/hrTc by User $= 10.00 \, \text{min}$ IDF Curve = JERSEY CITY IDF 2017.IDF Storm duration $= 1.5 \times Tc$ Est. Reg'd Storage =622 cuft Target Q =2.000 cfs

^{*} Composite (Area/C) = [(0.350 x 0.98)] / 0.350

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Monday, 12 / 14 / 2020

Hyd. No. 3

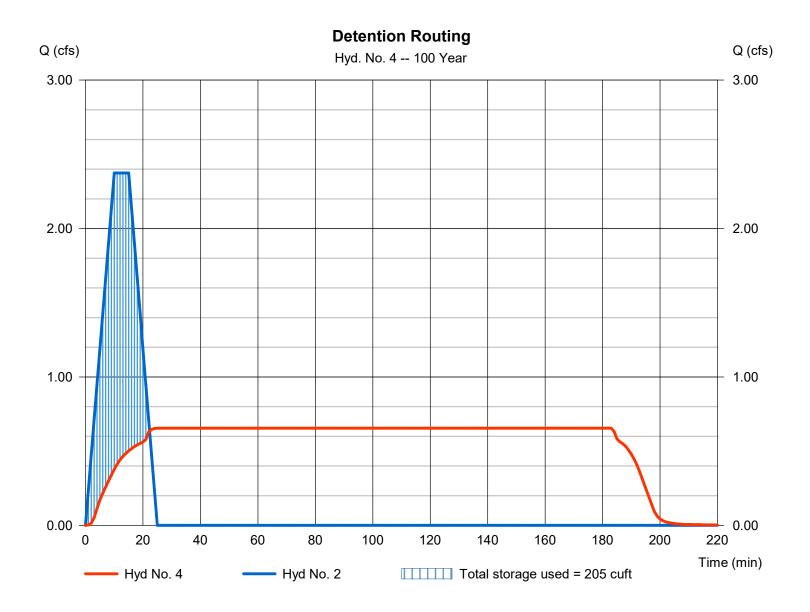
Proposed Undetained

Hydrograph type Peak discharge = 0.340 cfs= Rational Storm frequency = 100 yrsTime to peak = 10 min Time interval = 1 min Hyd. volume = 204 cuft Runoff coeff. = 0.98*Drainage area = 0.040 acTc by User Intensity = 8.675 in/hr $= 10.00 \, \text{min}$

IDF Curve = JERSEY CITY IDF_2017.IDF Asc/Rec limb fact = 1/1

^{*} Composite (Area/C) = [(0.040 x 0.98)] / 0.040

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

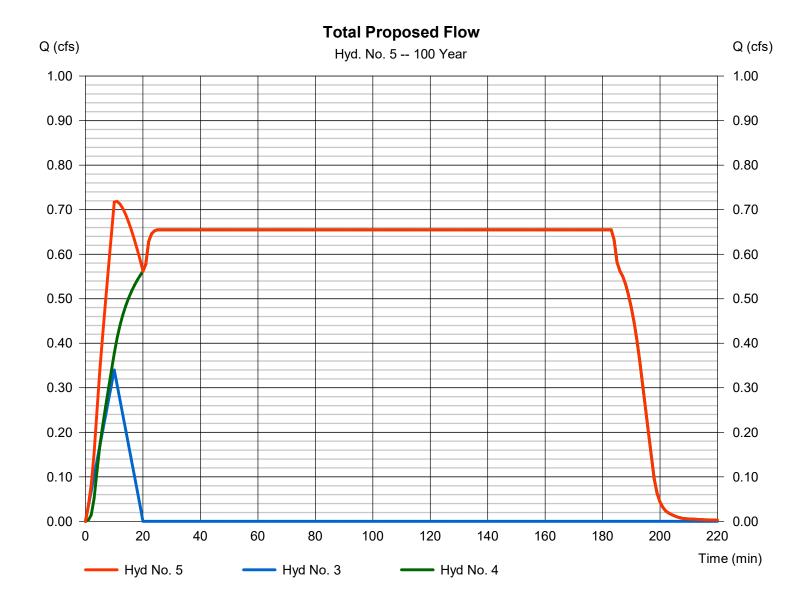

Monday, 12 / 14 / 2020

Hyd. No. 4

Detention Routing

Hydrograph type = Reservoir Peak discharge = 0.655 cfsStorm frequency = 100 yrsTime to peak = 28 min Time interval = 1 min Hyd. volume = 7,190 cuftInflow hyd. No. = 2 - Proposed Detained Max. Elevation $= 87.05 \, \text{ft}$ = Detention Pond = 205 cuft Reservoir name Max. Storage

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Monday, 12 / 14 / 2020

Hyd. No. 5

Total Proposed Flow

Hydrograph type = Combine Peak discharge = 0.718 cfsStorm frequency Time to peak = 100 yrs= 11 min Time interval = 1 min Hyd. volume = 7,394 cuftInflow hyds. Contrib. drain. area = 3, 4= 0.040 ac

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Monday, 12 / 14 / 2020

Return Period	Intensity-Du	ensity-Duration-Frequency Equation Coefficients (FHA)								
(Yrs)	В	D	E	(N/A)						
1	0.0000	0.0000	0.0000							
2	22.9807	3.7000	0.7147							
3	0.0000	0.0000	0.0000							
5	0.0000	0.0000	0.0000							
10	37.7243	3.9000	0.7214							
25	0.0000	0.0000	0.0000							
50	0.0000	0.0000	0.0000							
100	57.0886	3.8000	0.7179							

File name: JERSEY CITY IDF_2017.IDF

Intensity = $B / (Tc + D)^E$

Return	Intensity Values (in/hr)											
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	4.90	3.54	2.83	2.39	2.09	1.86	1.68	1.54	1.43	1.33	1.25	1.18
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	7.79	5.65	4.53	3.82	3.33	2.97	2.69	2.46	2.28	2.13	1.99	1.88
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	11.98	8.67	6.95	5.87	5.12	4.56	4.13	3.79	3.50	3.27	3.06	2.89

Tc = time in minutes. Values may exceed 60.

Precip. file name: S:\Apps\Hydroflow Storm Data\NJ-Passaic.pcp

		Rainfall Precipitation Table (in)										
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr				
SCS 24-hour	0.00	0.00	0.00	0.00	0.00	6.43	0.00	0.00				
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Monday, 12 / 14 / 2020

Watershed Model Schematic	1
Hydrograph Return Period Recap	2
2 - Year	
Summary Report	3
Hydrograph Reports	4
Hydrograph No. 1, Rational, Existing	
Hydrograph No. 2, Mod. Rational, Proposed Detained	5
Hydrograph No. 3, Rational, Proposed Undetained	6
Hydrograph No. 4, Reservoir, Detention Routing	
Pond Report - Detention Pond	
Hydrograph No. 5, Combine, Total Proposed Flow	10
10 - Year	
Summary Report	11
Hydrograph Reports	12
Hydrograph No. 1, Rational, Existing	12
Hydrograph No. 2, Mod. Rational, Proposed Detained	13
Hydrograph No. 3, Rational, Proposed Undetained	14
Hydrograph No. 4, Reservoir, Detention Routing	15
Hydrograph No. 5, Combine, Total Proposed Flow	16
100 - Year	
Summary Report	17
Hydrograph Reports	18
Hydrograph No. 1, Rational, Existing	
Hydrograph No. 2, Mod. Rational, Proposed Detained	19
Hydrograph No. 3, Rational, Proposed Undetained	
Hydrograph No. 4, Reservoir, Detention Routing	
Hydrograph No. 5, Combine, Total Proposed Flow	22
IDE Donort	າາ